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Despite diverse acute pharmacological actions, all drugs of
abuse produce many similar behaviors, such as psychomotor
sensitization, conditioned drug taking, drug seeking, and
relapse (1). The development of these addiction-related beha-
viors is thought to arise from diverse molecular and cellular
adaptations, which collectively result in convergent long-term
functional alterations of the striatum. However, at the cellular
level, on the one hand, exposure to different classes of drugs,
such as stimulants versus opioids (2), induces distinct and
often opposing forms of adaptations in striatal medium spiny
neurons (MSNs). On the other hand, exposure to alcohol pro-
motes alcohol consumption by simultaneously activating both
excitatory and inhibitory synaptic signaling, two seemingly
opposing mechanisms, in the striatum (3,4). It remains under-
explored how such opposing synaptic mechanisms contribute
to the same behavioral states induced by drugs of abuse.

The striatum is composed of two distinct circuits in parallel,
termed the direct and indirect pathways (5). MSNs expressing
the dopamine D1 receptor (D1-MSNs) form the direct pathway,
whereas MSNs expressing the dopamine D2 receptor (D2-
MSNs) form the indirect pathway. These two MSN subpopula-
tions preferentially mediate different aspects of motivated
behaviors, such that, under certain conditions, D1-MSNs
promote, while D2-MSNs suppress, behavioral responses (5).
Recent studies have started to identify cell type–specific
adaptations within the striatum following exposure to drugs
of abuse. Such cell type–specific adaptations may partially
explain how opposing synaptic mechanisms coordinate to
induce common circuit and behavioral consequences. The role
of these MSN subpopulations remain a mystery in alcohol-
induced behaviors, as does whether exposure to alcohol does
indeed induce cell type–specific adaptations in the striatum
and, if so, how distinct MSN subpopulations contribute to
alcohol seeking and consumption.

In this issue of Biological Psychiatry, Cheng et al. (6) directly
address these important questions by identifying specific
alcohol-induced adaptations in D1- and D2-MSNs and deter-
mining how these MSN subpopulations contribute to alcohol
consumption. Cheng et al. (6) first examined whether N-
methyl-D-aspartate receptor (NMDAR)–mediated excitatory
synaptic transmission in the dorsomedial striatum (DMS) is
altered in a cell type–specific manner following prolonged
alcohol exposure. Following 8 weeks of intermittent access to
alcohol, which resulted in excessive alcohol consumption,
NMDAR-mediated excitatory postsynaptic currents were
selectively increased in D1-MSNs of mice 24 hours after
the last self-administration session. In contrast, D2-MSNs
showed a reduction in the current mediated by extrasynaptic
NMDARs. Subsequent examination revealed that the strength-
ening of NMDAR-mediated excitatory postsynaptic currents in
D1-MSNs stemmed, in part, from the enhancement of GluN2B
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subunit–containing NMDAR function. In contrast, gamma-
aminobutyric acid (GABA)–mediated inhibitory postsynaptic
currents were selectively increased in D2-MSNs. Taken together,
these findings demonstrate that prolonged alcohol exposure
induces differential synaptic adaptations in D1-MSNs versus D2-
MSNs within the DMS. These adaptations may ease the activa-
tion of D1-MSNs through enhanced excitation, while suppressing
the activation of D2-MSNs through enhanced inhibition, tipping
the balance of activity between these two MSN subpopulations
in favor of the direct pathway.

Does the altered balance between D1- and D2-MSNs within
the DMS contribute to the excessive consumption of alcohol?
To address this question, Cheng et al. (6) manipulated the
activity levels of D1- and D2-MSNs within the DMS of animals
during alcohol drinking sessions through chemogenetic
approaches. Shifting the balance of striatal activity in favor
of the direct pathway through chemogenetic activation of D1-
MSNs or inhibition of D2-MSNs resulted in the same beha-
vioral consequence—increasing the consumption of and pre-
ference for alcohol. In contrast, shifting the balance of striatal
activity in favor of the indirect pathway through chemogenetic
suppression of D1-MSNs or activation of D2-MSNs attenuated
the consumption of and preference for alcohol. These findings
indicate that the altered balance between the direct and
indirect pathways resulting from alcohol-induced cell type–
specific adaptations drives excessive alcohol consumption.

Lastly, Cheng et al. (6) identified a mechanism underlying
the alcohol-induced reduction in GABAergic transmission to
D2-MSNs. Acute stimulation of D2-receptors reduced the
amplitude of inhibitory postsynaptic currents in D2-MSNs,
which was due to the activation of glycogen synthase kinase-
3β (GSK3β), a downstream signaling target of Gi-coupled D2

receptors. Subsequent investigation demonstrated that follow-
ing prolonged alcohol self-administration, there was an
increase in the inactive form of GSK3β in the DMS, which
was associated with increased expression of GABAA recep-
tors, indicating a possible mechanism for alcohol-induced
enhancement of inhibition to D2-MSNs. Indeed, when D2

receptors were stimulated in the DMS in vivo, alcohol con-
sumption was significantly attenuated, which was dependent
on GSK3β activity as well. Similar behavioral effects were
observed when GABA signaling in general was inhibited in the
DMS. These findings suggest that decreased GSK3β activity in
the DMS may serve to enhance the inhibition of D2-MSNs to
tip the balance between D1- and D2-MSNs for the excessive
consumption of alcohol.

These findings by Cheng et al. (6) provide significant insight
into the circuit mechanisms within the DMS that contribute to
alcohol addiction. These findings also highlight how differential
or opposing synaptic adaptations induced by drugs lead to
common circuit level alterations in the striatum to produce
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similar circuit and behavioral outcomes. Recently, it has been
demonstrated that exposure to cocaine and morphine induces
opposite synaptic adaptations in ventral striatal MSNs, with
cocaine promoting synaptogenesis and morphine promot-
ing synaptic elimination (7). However, cocaine preferentially
targets D1-MSNs, while morphine targets D2-MSNs, which
results in the same net shift in balance of excitation to D1- and
D2-MSNs (7). These findings, together with the findings of
Cheng et al. (6), suggest that cocaine, morphine, alcohol, and
likely other drugs of abuse all produce the same circuit shift,
albeit through distinct mechanisms. It will be important to
determine if this circuit shift also holds for other commonly
abused drugs, such as nicotine, amphetamine, and marijuana.

In addition to providing circuit-level insight, the findings of
Cheng et al. (6) provoke several important questions for future
studies. First, are there additional cell type–specific adapta-
tions in the DMS following prolonged withdrawal from alcohol
that may contribute to relapse? It has been well documented
for many drugs of abuse, including alcohol, that during
protracted withdrawal, there is a progressive intensification
in cue-induced drug seeking, a phenomenon termed the
“incubation of drug craving” (8). A possible cellular process
underlying incubation of drug craving is the generation of new
synapses in D1-MSNs, as has been suggested for cocaine (7).
The synaptogenesis process induced by cocaine exposure is
initiated by insertion of GluN2B-containing NMDARs to new
synaptic locations (7). Therefore, the enhanced function of
GluN2B-containing NMDARs in D1-MSNs observed 24 hours
after cessation of alcohol consumption may represent the
initiation of synaptogenesis. The potential alcohol-induced
synaptogenesis in D1-MSNs may profoundly remodel the
DMS circuits, and on maturation during drug withdrawal, they
may further enhance the D1-MSN circuit to aggravate relapse,
as has been demonstrated for incubated cocaine seeking (9).

Second, do these alcohol-induced synaptic adaptations
occur in specific glutamatergic projections to the striatum?
The striatum receives glutamatergic inputs from diverse and
distinct brain regions, including cortical, thalamic, and amyg-
dalar areas. Projections from these different regions are
thought to convey different information to the striatum and
thus may regulate specific aspects of behavior. After exposure
to cocaine, distinct synaptic adaptations are detected in
different glutamatergic afferents to the ventral striatum, which
can exert differential effects over drug seeking (9). A
projection-specific characterization of alcohol-induced synap-
tic adaptation will greatly extend the understanding of circuit-
based mechanisms underlying alcohol seeking and relapse.

It will also be of interest to determine the sources that
provide enhanced inhibition to D2-MSNs after exposure to
alcohol. Major sources of GABA-mediated inhibition to striatal
MSNs arise from local inhibitory interneurons that form a local
feedforward inhibitory circuit and axon collaterals from neigh-
boring MSNs providing lateral inhibition (10). Feedforward and
lateral inhibition influence the circuit activity in fundamentally
different ways, such that feedforward inhibition may serve to
gate the activation in response to excitatory inputs, whereas
lateral inhibition may confer winner-take-all properties to
competing neurons (10). Therefore, understanding how
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alcohol affects these different inhibitory circuits will add
another piece of the puzzle underlying the circuit mechanisms
of alcohol addiction.

Collectively, Cheng et al. (6) report a series of cell type–
specific adaptations induced by prolonged alcohol exposure
that shifts the balance between the direct and indirect path-
ways that drive alcohol consumption. These findings contri-
bute to the growing body of evidence identifying common
circuit-based mechanisms of drug addiction and open up the
possibilities for many exciting future studies.
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